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Abstract This study introduces a set of multivariate models with the aim of forecasting global prices of 1) crude oil, 2) 
natural gas, 3) iron ore, and 4) steel. Various versions of vector autoregression and error-correction models 
are applied to monthly data for the short-term prediction of nominal commodity prices six months ahead. The 
fundamentals for metal and energy price predictions include inter alia, stock changes, changes in commodity 
production volumes, export volumes by the largest players, changes in the manufacturing sector of the largest 
consumers, the state of global real economic activity, freight rates, and a recession indicator. Kilian’s (2009) 
index of global real economic activity is found to be a useful proxy for global demand and a reliable input in 
forecasting both energy and metal prices. The findings suggest that models with smaller lag orders tend to 
outperform those with a higher number of lags. At the same time, selected individual models, while showing a 
standalone high performance, have varying forecast precision during different periods, and no individual model 
outperforms others consistently throughout the forecast horizon. Note that the price projections obtained from 
the models could be used further for the longer-term forecasting of commodity prices. Our short-term hands-on 
framework could be a useful forecasting tool for central bank policymakers and researchers. 
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1. INTRODUCTION
Commodity prices play an increasingly important role 

in influencing global inflation and the macroeconomic 
environment. For many developing economies, primary 
commodities remain the main drivers of the balance of 
payments, while price fluctuations affect their macroeconomic 
performance. Energy transition, the COVID-19 pandemic, 
and russia’s war against Ukraine have led to sharp price 
changes, highlighting the high volatility of the commodity 
markets and the vulnerability of commodity-dependent 
countries to price shocks (Baffes and Nagle (eds.), 2022). 
Therefore, a deeper understanding of commodity price 
movements and the factors behind them are crucial to 
policymakers, international institutions, and think tanks.

The approaches used to forecast the prices of energy 
and metals differ in many ways depending on the purpose 
of studies, the benchmarks chosen, the frequency of data, 
and forecasting techniques. There are papers that employ 
univariate techniques (Tularam and Saeed, 2016; Nademi 
and Nademi, 2018; Hosseinipoor et al., 2016), multivariate 
econometric models (Nick and Thoenes, 2014; Berrisch and 
Ziel, 2022), and machine learning approaches (Kriechbaumer 
et al., 2014; Li et al., 2020). Various research studies focus 
either on short- or long-term forecasting tools: they aim to 

predict the spot (nominal or real) prices or futures prices of 
commodities, and find the interrelation between commodity 
prices and their potential impact on one another (West and 
Wong, 2014). 

This paper introduces the hands-on approach of 
multivariate models for the short-term forecasting of 
global prices for crude oil, natural gas, steel, and iron, and 
analyzes the forecasting performance of these techniques. 
More specifically, this study focuses on predicting the spot 
nominal monthly prices of commodities six months ahead, 
while the majority of papers develop models to predict 
either futures prices (Bowman and Husain, 2004; Reichsfeld 
and Roache, 2011; Ambya et al., 2020), spot real quarterly 
prices (Baumeister and Kilian, 2013, 2014; Wårell, 2018) or 
price indices (Chou et al., 2012). Our short-term hands-on 
framework could be a useful tool for central banks and 
analysts, while the price projections obtained from these 
models could be used further as assumptions for the longer-
term forecasting of commodity prices. 

The paper is organized as follows. Section 2 provides 
a review of relevant research literature on commodity 
price forecasting, and examines the modern econometric 
approaches used to predict oil, gas, iron ore and steel 
prices. Section 3 describes the general methodology 
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of  VAR/VECM models, and is divided into subsections to 
analyze in detail the specifications of the models and data 
for each of the four commodities discussed. In Section 4, we 
look at the results of our short-term models and assess their 
forecasting properties. Finally, Section 5 offers conclusions 
and recommendations on how this forecasting approach 
can be improved. 

2. LITERATURE REVIEW
Forecasting commodity prices is generally considered 

a challenging task, and rightfully so, given their volatility, 
dependence on many economic and financial factors, 
trend changes over time, and the huge variety of methods 
and approaches used in forecasting. The literature on 
commodity price forecasting differs significantly, depending 
on the purposes of the studies, the techniques used and the 
features of each commodity market. There are papers that 
employ econometric approaches, namely univariate and 
multivariate forecasting models, and those that use machine 
learning and non-parametric techniques. Different studies 
also focus on short- or long-term forecasting tools; they aim 
to predict spot or futures prices of commodities, nominal or 
real (spot) prices; and seek to find the interrelation between 
different commodity prices and their potential impact on 
one another. In this section, we review the literature by the 
commodities of interest.

The literature on predicting global crude oil prices is 
probably the most extensive, compared to other commodity 
groups, due to the impact oil prices have on inflation and 
macroeconomic development. For example, Tularam and 
Saeed (2016) focus on univariate time-series models to 
predict oil price movements, and find that the ARIMA model 
is a better fit for daily WTI oil prices than the exponential 
smoothing and Holt-Winters models. Conversely, Nademi 
and Nademi (2018) find that the semiparametric Markov-
switching AR-ARCH model outperforms other simple 
approaches, including ARIMA and GARCH, when it comes 
to forecasting OPEC, WTI and Brent oil prices. However, 
univariate forecasting models rely only on one input – in this 
case, the price of crude oil itself and its past patterns – and 
do not take into account other factors that might impact the 
price. Whereas multivariate models are more sophisticated 
and include the economic determinants of price movements. 

It is worth noting that a number of research papers use 
oil futures prices to predict movements in spot prices. The 
intuition behind this is that oil is both a physical commodity 
and a financial asset. Thus, it is often argued that there is 
a theoretical link between its spot and futures prices, and the 
slope of oil futures prices may help predict the movements 
in spot prices. The empirical evidence, however, is mixed. 
Chernenko et al. (2004), for instance, argue that oil futures 
prices ( just as natural gas futures prices) show little evidence 
for risk premiums and can be used to forecast spot prices. 
Some central banks tend to use futures curves for the short-
term forecasting of oil spot prices as they are simple and 
easy to communicate. Reichsfeld and Roache (2011) prove 
empirically that futures-based forecasts outperform random 
walk models over a three-month horizon, but not over longer 
forecast periods. In contrast, Alquist et al. (2011) conclude 
that futures prices are not good predictors of nominal oil 
prices and do not outperform no-change forecasts. There is 
also an arbitrage relationship between oil futures and spot 
prices, which, inter alia, means that the slope of oil futures 
prices is rather flat relative to the changes in oil spot prices 
(Nixon and Smith, 2012). Moreover, due to oil being a physical 

and storable good with limited inventories, its futures price 
curve is downward sloping most of the time, except for 
some occasions of contango (i.e. an upward sloping curve) 
when there is ample supply and a high level of oil stocks. In 
general, futures-based models alone do not prove accurate 
in predicting spot oil prices, Therefore, other approaches or 
even combinations of different models should be used (ECB, 
2015).

A growing number of recent research papers focus 
on vector autoregression (VAR) models to predict nominal 
and real spot prices on the commodity markets as these 
models take into account the economic determinants of 
price movements and market fundamentals. Such models 
consider each variable as a function of its own past values 
and past values of other variables in the model. They also 
provide estimates of the impact of supply and demand 
shocks on commodity prices, which makes such models 
a useful analytical tool. VAR and structural VAR models 
have smaller forecast errors and prove to be more accurate 
in forecasting oil price movements than other time-series 
techniques, especially in the short run (as discussed in 
Baumeister and Kilian (2013, 2014), Kilian and Murphy 
(2014) etc.). For example, Baumeister and Kilian (2014), in 
their seminal work, study real-time forecasting techniques, 
including forecast combinations, to predict the quarterly 
real price of oil over short-term horizons. The authors use 
market fundamental variables, such as a change in crude 
oil production, Kilian’s (2009) index of global real economic 
activity, a change in oil inventories and so on to conclude 
that VAR models based on monthly data are the most 
accurate tools for predicting real oil prices on a quarterly 
basis. At the same time, one may argue that the accuracy 
and stability of individual forecasts are time varying, and 
different models might be suitable for different periods. 
Thus, the combination of individual forecasts should improve 
the accuracy of forecasts and help overcome the potential 
misspecifications of individual models. Baumeister and Kilian 
(2014) developed a number of forecasting models to test an 
equal-weighted combination of a monthly VAR model (as 
the best-performing one among the individual approaches) 
and the futures-based approach, which provides some 
MSPE improvement of the forecast of the U.S. real refiners’ 
acquisition cost (RAC) and WTI price, while deteriorating 
directional accuracy. However, this combination method 
does not improve forecast accuracy for Brent oil real prices at 
all, thus the results are mixed. In their later study, Baumeister 
and Kilian (2013) demonstrate that the combination of four 
models (namely a VAR model, a model based on non-oil 
commodity prices, a method based on futures spreads, and 
a time-varying product spread approach) with inverse MSPE 
weights actually provides better forecast accuracy. The 
results hold for the U.S. refiners’ acquisition cost for crude 
oil imports and WTI oil prices over January 1992 through 
September 2012, but there are no results for Brent oil prices, 
due to the lack of suitable data.

In contrast, Manescu and Van Robays (2014) focus on the 
current international benchmark price and prove empirically 
that for Brent oil prices for the period from Q1 1995 through 
Q4 2012, a four-model combination, which consists of 
futures, risk-adjusted futures approaches, Bayesian VAR, and 
a DGSE model, is the best forecasting technique. This equal-
weighted model combination produces robust forecasts of 
oil prices over the studied period, reduces the forecast bias, 
and outperforms simple models in out-of-sample exercises. 
At the same time, this combination approach is found to 
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improve the forecasts of the futures-based model and the 
random walk model (on average, up to 11 quarters ahead), 
but there is no evidence that it outperforms other forecasting 
approaches. When compared to benchmarks other than 
predictions by futures prices, it may produce worse results. 
Moreover, given the latest patterns on the global oil market, 
it is unclear if this particular combination of models can be 
robust over a more recent period than that discussed in 
a paper by Manescu and Van Robays (2014), i.e. after 2012.

The research papers mentioned above describe the 
methods of forecasting real oil prices or real RAC (refiner 
acquisition cost) based on global supply and demand 
variables, according to economic theory. These real price 
forecasts could then be used by analysts and policy makers. 
Nominal price forecasts, which are usually of interest, could 
be derived from them, using separate forecasts of the CPI. 
Thus, the models proposed in the aforementioned papers 
cannot directly predict the nominal price of oil and require 
other models or external forecasts for that. Meanwhile, 
Beckers and Beidas-Strom (2015) introduce CPI inflation 
into the VAR model to fill in this gap in the literature, and 
they find that this VAR model outperforms the random walk 
and futures-based forecasts. The authors also conclude that 
there is merit in combining forecasts of futures and VAR 
models, although only for horizons beyond 18 months.

Just as in the case of forecasting oil prices, the literature 
on predicting natural gas prices differs in terms of the 
purpose of forecasts, chosen benchmarks or markets, 
the use of additional price determinants, and forecasting 
methodology. For example, Hosseinipoor et al. (2016) apply 
the ARIMA/GARCH combined approach to predict Henry 
Hub (U.S. market) monthly spot prices in the long run. In 
contrast, Jin and Kim (2015) suggest using a combination 
of wavelet decomposition and the ARIMA model, for more 
precise forecasting of Henry Hub weekly spot prices. 

A growing body of literature, however, studies the impact 
of additional factors on natural gas prices and suggests that 
multivariate models are more precise for forecasting. For 
instance, Nick and Thoenes (2014) develop a structural VAR 
model for the German (NCG) gas hub over the period of 
2008-2011 and find that in the short-term gas prices depend 
on the temperature, storage and supply shortfalls, while 
in the long-term crude oil and coal prices have an impact 
on gas price developments. Moreover, the authors argue 
that while supply interruptions have an impact on NCG gas 
prices, their effects might be overestimated, since some of 
the supply shortfalls overlapped with extraordinary demand-
side conditions. Thus, it is important to not only focus on the 
supply-side aspects of the gas market in order to improve 
its security, but also to address the flexibility side of market 
demand.

Hamie (2020) tests an extensive set of methodologies to 
model natural gas prices, including game theory, information 
theory, records theory, non-parametric approaches, and the 
multivariate regression analysis. As for multivariate models, 
the author employs the VECM (vector error-correction 
model) to account for the effects of fundamental variables 
on gas price formation. Hamie (2020) argues that natural gas 
prices in the German hub (NCG benchmark) are affected by 
the weather conditions measured by heating degree days, 
the storage utilization of gas, coal and crude oil prices, the 
euro-dollar exchange rate, as well as by the lags of their own 
prices. At the same time, it is argued that many other factors 
might determine natural gas prices, including oil storage 

inventories, extreme weather events, political factors, and 
financial market conditions. Similarly, Berrisch and Ziel 
(2022) use state-space models to forecast daily and monthly 
gas prices based on various factors, such as seasonality, 
air temperature, risk premiums, storage levels, the price of 
European Emission Allowances, and the prices of oil, coal 
and electricity. As can be seen even from the examples 
above, apart from the main supply and demand factors, it is 
common to use weather-related variables to model natural 
gas prices. Temperature has an impact on gas consumption 
as the primary usage of gas is for heating purposes. 
Moreover, gas is also used in hot weather to cool buildings. 
Heating degree days (HDD) and cooling degree days (CDD) 
are the measures that quantify respective energy needs 
depending on the temperature (Sharma et al., 2021).

Gao et al. (2021) develop a class of hybrid time-varying 
parameter models (i.e. combinations of TVPSV and Markov 
switching classes of models) for three gas markets, namely 
the U.S., and the European and Japanese markets. The 
authors find evidence that time-varying models are better for 
forecasting European and Japanese monthly gas prices than 
static models, while for the U.S. market a simple AR model 
outperforms other studied approaches.

In recent literature, more and more papers focus on 
the Dutch TTF price as a benchmark, because the TTF is 
currently Europe’s main gas hub, and it is becoming widely 
internationalized. Hulshof et al. (2016), for example, prove 
that daily TTF gas prices predominantly depend on market 
fundamentals, such as weather and storage availability, 
while the linkage between crude oil and natural gas prices 
is not strong over the period of 2011–2014, and coal prices 
are insignificant for the day-ahead forecasting of gas prices. 
Obadi and Korcek (2020) examine month-ahead TTF 
contracts over 2016–2019 and find evidence that monthly 
gas prices are driven by demand and supply fundamentals, 
like the price of German power and the price of coal, 
changes in total demand for gas, storage capacity, and in 
LNG variables. 

The literature on predicting iron ore and steel prices 
is interrelated, given the direct links between these two 
commodity markets. Iron ore is the primary raw material that 
is used in the production of steel and steel products. Almost 
all iron ore that is mined is used in steelmaking, thus the 
demand for iron ore is primarily defined by the demand for 
steel. Therefore, the factors impacting global iron ore and 
steel prices are related. 

The Asian market, more specifically Chinese consumers, 
play a great role in shaping the global iron ore market. China 
is a dominant consumer of metals in general and iron ore in 
particular, as it is the world’s largest producer of steel. The 
growing importance of the Chinese market is often seen as 
one of the main reasons behind the transition of the iron 
ore pricing mechanism from an annual negotiation system 
to spot market pricing in late 2008–2010 (Wårell, 2014; 
Wårell, 2018). The author also finds GDP growth in China to 
have the strongest impact on iron ore prices. Ma and Zhen 
(2020) analyze spot prices for iron ore in 2014-2018 and find 
evidence that China’s steel production affects the volatility 
of iron ore prices, while the mean and volatility of prices are 
also influenced by changes in port stocks.

Mei and Chen (2018) study the factors influencing 
steel overcapacity on the Chinese market and find that 
they include the steel export rate, investment in fixed 
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assets, the growth rate of real estate construction areas, 
concentration levels in the iron ore and steel industry, iron 
ore prices, and local government investment. The capacity 
utilization rate has an impact on market competition and 
prices. For example, moderately excess capacity can 
improve competition and boost technological innovation in 
the industry, whereas severe overcapacity might provoke 
vicious competition, weak prices and a deterioration in the 
business environment. 

There is a growing bulk of literature suggesting that there 
are links between the prices of different commodity groups. 
For example, Campiche et al. (2007) find cointegrating 
relationships between crude oil, corn and soybean prices 
over 2006–2007. Nazlioglu and Soytas (2012) prove the 
presence of dynamic cointegration links between the global 
oil price and prices of twenty-four agricultural commodities 
over an extended period of 1980–2010. Meanwhile, West 
and Wong (2014) employ factor models to predict the monthly 
prices of energy, metals and agricultural commodities using 
a sample of 1996 to 2012. Ding and Zhang (2020) use cross-
market information from long-run equilibrium models to 
predict commodity prices, such as oil, copper, cattle, corn, 
and gold. 

A number of papers argue that energy and crude oil 
prices can determine the prices of other commodities, 
including metals. The intuition behind this argument is 
that oil constitutes an important operational expense and 
a power source for the shipping industry, and commodities, 
such as metals, are often transported by sea. Therefore, 
the literature provides empirical evidence of crude oil 
prices having long-term cointegration relations with other 
commodity prices. For instance, Chou et al. (2012) prove, 
using a VARMA model, that global steel prices measured 
by the CRU steel price index were cointegrated with, and 
affected by, crude oil prices over the period of 2000 to 2010. 
Similarly, Asmoro (2017) has evidence that hot rolled coil 
(HRC) and billet steel prices are impacted by crude oil prices 
over the period from May 1996–December 2016. Moreover, 
studies by Chou et al. (2012) and Asmoro (2017) suggest that 
there is a unidirectional causal relation between crude oil 
and steel, i.e. the steel price is impacted by the crude oil 
price, whereas changes in oil prices are not influenced by 
steel prices. 

Therefore, the literature on modeling the prices of 
energy and metals is quite extensive. However there are still 

some shortcomings, which could be improved. One of them 
is the primary usage of quarterly frequency data to predict 
commodity prices, which makes forecasts less detailed 
and ignores some important price reactions to changes in 
fundamental factors. Another drawback is that many authors 
focus on predicting real prices, commodity indices or futures 
prices, while changes in nominal spot prices are often of 
higher interest to central banks, researchers and think tanks. 
Moreover, the models used in the literature do not always 
incorporate a sufficient number of explanatory variables, 
focusing rather on the impact of a limited number of factors 
on commodity price developments. This study adds to the 
literature by 1) focusing on monthly rather than quarterly data 
to predict commodity prices in the short-run, 2) predicting 
the nominal spot prices of the commodities of interest, 
3) using up-to-date global benchmarks for commodity prices, 
and 4) accounting for the comprehensive set of supply and 
demand factors that determine price movements. Moreover, 
the models applied in this study do not completely repeat the 
specifications used previously in the literature, but represent 
a hands-on approach to predicting commodity prices, taking 
into account the perspectives of central banks.

3. DATA AND METHODOLOGY

3.1. General Methodology
We use monthly data for the periods from 2003, 

2004 or 2008 (depending on the availability of the data 
required by model specifications) up to February 2023 
to examine the determinants of global commodity prices 
and construct 6-month-ahead forecasts. For instance, the 
models that include global manufacturing PMI as a proxy 
for global demand have their estimation samples starting 
in 2008 due to the limited availability of this data. Overall, 
the chosen time span is sufficient to analyze the dynamics 
of commodity prices and allows for some adjustment of the 
models to previous episodes of price volatility, relatively 
similar to the current ones. Although macro-forecasting 
processes in central banks normally focus on quarterly 
data, monthly variables better capture price developments 
and market changes, while also allowing one to make 
a more precise prediction of commodity prices than with 
quarterly data.  Moreover, the quarterly projections of 
prices can easily be derived from our monthly forecasts 
by averaging, and can be used further for macroeconomic 
forecasting (Figure 1). 

Figure 1. Nominal Global Prices of Energy Commodities and Metals

Source: World Bank, Thomson Reuters, Delphica.
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In the models that are described below, the variables 
chosen have inter-links that are explained by economic 
theory. Moreover, they demonstrate Granger-causality 
relative to one another, which justifies the use of VAR models. 
All variables are tested for unit roots, and nonstationary series 
are transformed into stationary ones by simple differencing 
or log-differencing (see Table 5). In the case of cointegration 
relationships between the variables, error-correction models 
are used.

In order to account for the main demand and supply 
factors that affect price changes and for the impact of past 
observations on commodity prices, we employ standard 
vector autoregressive (VAR) and vector error-correction 
models (VECM) to regress the world prices of crude oil, natural 
gas, steel and iron ore, and to make projections. Although 
the choice of variables in the models and of forecasting 
approaches is based on the literature and economic theory, 
they do not completely repeat the models used previously 
in other studies. The methodology of this study represents 
a hands-on approach to predicting commodity prices, taking 
into account the perspectives of central banks, and shows 
the impact of various factor combinations on price changes. 
We compare the forecast accuracy of the models (measured 
by root mean square errors) to that of a random walk forecast 
and perform an out-of-sample forecasting exercise.

The VAR model

The general representation of a standard reduced-form 
VAR model with р lags can be written as follows:

− − −= + + +…+ +1 1 2 2t t t p t p ty c B y B y B y u ,  ( )Ω~ 0,tu ,    (1)

where y
t
 and c are K × 1 vectors of K monthly variables and 

constants, respectively, and B
i
, i = 1, ..., p are K × K matrices of 

coefficients. The residuals u
t
 are assumed to be i.i.d. N(0, Ω), 

where Ω is the variance-covariance matrix of innovations.1  

Equation (1) indicates that any series in the model 
depends on the past values of all the K series through their 
lags. For example, if the number of variables K in the system 
equals 2, and the number of lags p = 2, the VAR(2) process 
can be rewritten as follows:
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where the subscripts indicate equation and variable 
numbers, and the superscripts refer to the lag number. Thus, 
the VAR(p) is an example of a seemingly unrelated regression 
(SUR) model with lagged variables and deterministic terms 
as common regressors (Zivot and Wang, 2003). In addition, 
some other deterministic terms (seasonal dummies, a linear 
trend, and a set of exogenous variables) can be included in 
the VAR system. 

The VECM Model

When variables in such a system are cointegrated, 
the vector error correction model (VECM) should be used 
rather than a standard VAR model. Variables are said to be 
cointegrated if each of them are non-stationary with a unit 
root (I(1)), while there is some linear combination a'y

t
 of these 

series which are I(0), i.e. stationary. Here a is a non-zero 
K × 1 vector.

Let us consider again a VAR(p) process as in equation (1). 
In lag operator notation, this equation can be written as 
follows:

( ) = +t tB L Y c u ,                                  (3)

where ( ) = − −…−1
p

K pB L I B L B L . This VAR system is stable if 
the roots of the polynomial

( )− − −…− =2
1 2det 0p

K pI B z B z B z

lie outside the complex unit circle, or have a modulus greater 
than 1. If at least one series among y

K,t
 is I(1), the VAR(p) 

is unstable, since ∏ = − − − −…−1 2( )K pI B B B = –(I
K
 – B

1
 – B

2
 – ... – B

p
) is singular,  

det(∏ =det( ) 0) = 0, and the roots lie on the unit circle. 

In general, cointegration means that there is some 
long-term relationship between the individual elements 
of y

t
, which is represented by the linear combination a’y

t
. 

A VECM is a special type of VAR model, which introduces 
error-correction terms into the system. A VECM focuses on 
differences to account for short-run relationships between 
variables (as represented in a VAR), while its error-correction 
terms and cointegrating equations account for short-run 
adjustments and long-run cointegrating relationships. For 
example, the VECM(2) system for two variables y

t,1
 and 

y
t,2

 can be specified as:
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where y
t,1
 = α

0
 + α

1
 y

t,2
 is the long-run cointegrating 

relationship between the variables y
t,1
 and y

t,2
, and λ

1
 and 

λ
2
 are the error-correction terms. The error-correction 

terms measure the response of the variables y
t,1
 and y

t,2
 to 

deviations from long-run equilibrium. As in (2), the subscripts 
in the system indicate equation and variable numbers, and 
the superscripts refer to the lag number. If a VEC model has 
more than two variables, it means that there can be more 
than one cointegrating relationship. The number of these 
relationships can be determined using cointegration tests. 
Also one should note, that the VECM(2) in example (4) is 
derived from the VAR(3) model, since the VECM focuses 
on differences, and for a VAR(p) model the corresponding 
VECM would be with (p – 1) lags.2  

3.2. Crude Oil Price Forecasting
To model global crude oil prices and to produce 

short-term forecasts, we use general VAR methodology 
introduced by Baumeister and Kilian (2013, 2014), with 
some adjustments. We use four standard VAR models 
with slightly different specifications to forecast monthly 
crude oil prices in the short run. The specifications of the 
models, which are based on the literature and economic 
theory, were adjusted in order to incorporate additional 
factors of interest that are relevant to the current period. 

1	 The number of lags (p) is obtained on the basis of some theoretical models, by using a rule of thumb, or by statistical selection criteria, such as the Akaike 
information criterion (AIC), the Schwarz-Bayesian criterion (BIC) and Hannan-Quinn (HQ) criterion.
2	 For a more detailed description of VAR and VECM estimations, please refer to Hamilton (1994), Zivot and Wang (2003), Ouliaris et al. (2018).
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They were also adjusted for analytical purposes to test 
the impact of various factor combinations on prices. 
For the first model, the vector of endogenous variables 
consists of 1) the real price of Brent oil (the nominal price 
deflated by the U.S. CPI) as an international benchmark, 
2) the percentage change in crude oil production, 3) the 
percentage change in OECD petroleum inventories (as 
a proxy for changes in global inventories), and 4) the index 
of global real economic activity also known as the Kilian 
(2009) shipping index (as a proxy for global demand). One 
of the important factors affecting real commodity prices 
is the shift in demand for commodities which, in turn, is 
caused by unexpected fluctuations in real global economic 
activity. Kilian’s index is a business-cycle indicator, which 
is derived from global bulk dry cargo shipping rates, and 
is expressed as a percentage deviation from the trend. 
Kilian’s index proves to be a good monthly indicator of 
the state of, and changes in, the global economy. We also 
find that it is a more convenient indicator than the index 
of monthly GDP of OECD+Major 6 NMEs calculated by 
the OECD, as the latter is available with significant lags, 
and does not capture major global economic fluctuations. 
For the discussion of the advantages of Kilian’s index, 
see Kilian (2009), and Kilian and Zhou (2018). Since our 
aim is to forecast nominal rather than real oil prices, we 
follow Beckers and Beidas-Strom (2015) and introduce 
a fifth variable, the U.S. CPI (index 1982 – 1984 = 100, 
seasonally adjusted, from the FRED database of the St. 
Louis Fed), into the vector of endogenous variables in our 
VAR models. That makes it possible to produce forecasts 
for both the real price of oil and the consumer price index, 
while also deriving a forecast of the nominal oil price. The 
vector of exogenous variables includes constants and 
eleven seasonal dummies, as in a paper by Beckers and 
Beidas-Strom (2015). The standard methodologies used in 
the aforementioned papers suggest including 12 lags as 
a rule of thumb for the models based on monthly data, or 
four lags for those based on quarterly data, respectively. 
Notwithstanding that, our standard VAR model has six lags, 
which is explained by the Akaike and Schwarz-Bayesian 
information criteria, and the model’s estimation sample 
starts in August 2003. The real price variable and the CPI 
are log-differenced to make them stationary, Kilian’s index 
is taken in the first difference, while two supply-side 
determinants expressed as percentage changes are 
already stationary. 

The second model’s specification is slightly different for 
analytical purposes and it shows the impact of a different 
combination of explanatory factors on price changes. Here 
we use the J. P. Morgan Global Manufacturing PMI as our 
global demand proxy, instead of Kilian’s index to test if 
a model with a different demand-side variable would prove 
more accurate in terms of forecasting. We also change the 
representation of the oil production variable by expressing 
it as the log-difference of production levels rather than 
calculating the percentage change in production. Due to 
the limited availability of the PMI time series, the sample 
for this model is shorter and starts in April 2008. We also 
employ two more models with the same specifications and 
sample length as the second one, but with a different U.S. 
inflation variable, which is a non-seasonally adjusted index, 
2010 = 100 (as a result, the real price of crude oil differs 
too). The model number three has six lags, like the first 
two models, which is based on the AIC and BIC. The fourth 
model has three lags in order to better capture the most 
recent movements in oil prices. Moreover, lag exclusion 

tests also show that a higher number of lags might be 
unnecessary for this model.

3.3. Natural Gas Price Forecasting
In order to model and forecast TTF gas prices, we 

apply VAR and VECM approaches. The choice of the 
explanatory variables is based on the research literature 
and the fundamentals for the European gas market (Nick 
and Thoenes, 2014; Hamie, 2020; Berrisch and Ziel, 
2022). The first model is a VAR(3) that uses the price of 
Dutch TTF gas, the Brent oil price, Kilian’s index of global 
real economic activity, the global manufacturing PMI, 
changes in natural gas reserves in the Netherlands, gas 
stock changes, and natural gas supply variables in first 
difference, as well as a vector of constants in exogenous 
variables. The price of oil is included into the model since 
it is a close substitute for natural gas, and the prices of 
these two energy resources normally tend to move in 
similar directions. The Kilian and PMI indices are used 
as proxies for global demand factors, whereas stock 
changes and gas supply and stocks represent the supply-
side determinants of gas prices. The second model 
basically has the same specifications, except that natural 
gas stocks are an exogenous variable. 

With a view to conducting an in-depth analysis as to 
whether or not gas prices have similar determinants as 
crude oil prices, we also apply two of the oil forecasting 
models to predict natural gas prices. Thus, model 
number three uses real rather than nominal prices of 
TTF gas, the change in oil production, the change in 
petroleum inventories, Kilian’s index, and the U.S. CPI. It 
also incorporates the vectors of constants and seasonal 
dummies into the set of exogenous variables, as in the 
oil forecasting models, but has 12 lags, as suggested in 
the literature and is confirmed by the information criteria. 
The fourth model, VAR(6), incorporates the real price 
of gas, an oil production variable (the first difference of 
natural logarithms rather than a percentage change), the 
PMI, the change in petroleum inventories, and the CPI, 
which are all used as endogenous variables. Similarly, 
there are seasonal dummies and constants used in the 
vectors of exogenous variables. The number of lags for 
this model’s specification is explained by the Akaike 
criterion and lag exclusion tests. These models are meant 
to test whether or not the factors influencing oil prices can 
be reliably used to model and predict natural gas prices, 
without including gas-specific market determinants.

Finally, the fifth model includes gas and oil nominal 
prices, Kilian’s index and the PMI, gas supply, and gas 
stock changes, as in the case of our second model. 
However, it has a different set of exogenous variables, 
namely seasonal dummies (as in the third and fourth 
models) and a weather conditions proxy measured in 
degree days, or DDs. As described earlier in the literature 
review section, temperature conditions play a crucial role 
in shaping natural gas consumption and, consequently, 
prices. When air temperatures are abnormally low, there is 
greater demand for heating and natural gas, which leads 
to higher gas prices. Likewise, very high temperatures 
increase the need to cool buildings, and natural gas is 
also widely used for these purposes. Heating and cooling 
degree days (HDDs and CDDs, respectively) are weather-
based technical indicators that measure the energy 
requirements of buildings in terms of heating and cooling. 
For example, if one compares energy needs in 1979 and 



2120

D. Balioz / Visnyk of the National Bank of Ukraine, 2022, No. 254, pp. 15–28

2022 in the EU, HDD values declined by 19% during this 
period indicating that heating needs in 2022 were roughly 
two-tenths lower on average than those in 1979. At the 
same time, CDD values in the EU were almost four times 
higher in 2022 compared to 1979, showing the increased 
need for air conditioning and higher energy consumption 
over decades (Eurostat, 2023).

Although we are interested in modeling gas prices 
for the Dutch TTF hub, which is a benchmark for the 
European market, degree days in the model are those 
related to weather conditions in Germany, rather than in 
the Netherlands. The intuition behind this is that Germany 
is the largest natural gas consumer in the EU. According 
to Eurostat’s final energy consumption indicator, which 
measures the energy consumption of end-users (industry, 
transport, households, agriculture, and services), Germany 
accounted for almost 27% of the total consumption of 
natural gas in the European Union in 2021. For comparison, 
Italy takes second place, but its end-users consume only 
about 16% of the total natural gas quantities consumed 
in the EU. Moreover, according to annual data for 2021, 
Germany is the dominant leader in the final consumption 
of heat with a share of over 21% of the EU’s total, and the 
top electricity consumer with a share that almost equals 
20%. And these shares have been stable or even growing 
over the years. Therefore, we include degree days data 
for Germany in our model number five. Since DD is an 
exogenous variable, we need readymade forecast values 
of it for the whole forecast horizon, but getting these 
weather forecasts on a country level is too complicated. 
Thus, we focus on regional data and gather DDs for the 
most populous cities, such as Berlin and Munich, and 
important industrial towns, including Ludwigshafen am 
Rheine, Wittenberg, and Hamburg. According to the 
Federal Statistical Office of Germany, the latter three 
cities are leaders in natural gas consumption in German 
industry. We collect historical degree days from Eurostat, 
where these indicators are calculated as follows:

If T
m
 ≤ 15°C   Then [HDD = ∑

i
 (18°C – Ti

m)]   Else [HDD = 0]

If T
m
 ≥ 24°C   Then [CDD = ∑

i
 (Ti

m – 21°C)]   Else [CDD = 0],  (5)

where T i
m is the mean air temperature of day i. The base 

temperatures for HDDs and CDDs are set to 15°C and 24°C, 
respectively, in accordance with the general climatological 
approach. These calculations are made on a daily basis 
and then added up to monthly figures, which we use. We 
then calculate total monthly degree days (DDs) as the 
sum of HDDs and CDDs of all chosen cities as a proxy 
for German energy needs. As Eurostat updates degree 
days once per year for the full year that has passed, we 
gather daily air temperature data for the aforementioned 
cities from the website https://www.weather25.com/ 
and use the formulae to produce the missing actual 
values of monthly DDs. We obtain the projected HDD 
and CDD values that are needed for the model from  
https://cds.climate.copernicus.eu/. These values are 
modelled on the basis of historical averages over a 30-year 
period taking into account climatological inputs. This model 
is a VECM since there are cointegration relationships 
between the variables in this specification, and the inclusion 
of two lags is explained by tests and information criteria.

The estimation samples of all of the models that predict 
natural gas prices start in either April or May 2008 and run 
through February 2023, except for the third model, which 

has its estimation sample starting in February 2004, as 
data for that period was more readily available. 

3.4. Iron Ore Price Forecasting
We apply standard VAR methodology to model iron 

ore prices. Again, we use four VAR models with slightly 
different specifications to better capture the impact that 
various combinations of factors might have on the price. 
After that, we construct a baseline forecast as an average 
of four approaches, which helps to combine the benefits 
of individual forecasting models and performs equally well 
during different periods. The models applied to use the 
monthly spot prices of iron ore fines, CFR China 62% Fe, 
from the World Bank database, as it is the most commonly 
used global benchmark. We deflate the nominal price by the 
U.S. CPI (index, 1982 – 1984 = 100) to obtain the real price. 
Similarly, the CPI is also included in the vector of endogenous 
variables, and the forecasts of the two variables are then 
used to obtain nominal price predictions. 

The iron ore market is significantly influenced by the 
steel market since iron ore is primarily used in steelmaking. 
Moreover, China’s large steel market makes it a big player, 
so it has a great impact on iron ore prices, especially 
from the demand side. China is the dominant consumer 
of metals in general and iron ore in particular, as it is the 
world’s largest producer of steel. Moreover, the Chinese 
construction sector and infrastructure projects require 
substantial amounts of materials, such as steel. With that 
in mind, we use China’s crude steel production (monthly 
growth rate expressed as a percentage) as a proxy for 
global demand for iron ore in all four models. Models one 
and two also use changes in the Baltic Dry Index, i.e. the 
Baltic Exchange’s main sea freight index. We expect an 
increase in freight rates to push up commodity prices as 
well. The Baltic Dry Index is available on a daily basis, but 
we transform it into a monthly series and then calculate 
monthly percentage changes. From the supply side, we 
add a change in Brazil’s exports of iron ore as this country, 
together with Australia, are traditionally major exporters of 
iron ore. As Australia’s detailed export data was not made 
available when we were collecting data, we focused on 
Brazil’s exports as the second largest iron ore exporter to 
China. The weather conditions in Brazil, other disruptions 
to its economy and the mining sector, as well as the policies 
of the mining giant Vale are known to influence Brazil’s iron 
ore production and export volumes and, through these, 
world prices. Two out of four VAR models have these 
variables and a vector of constants to model iron ore 
prices, however, they have different numbers of lags – 
two and one, respectively. This is attributable to different 
lag suggestions by statistical information criteria, and to 
ambiguous test results for the optimal number of lags that 
should be used. 

The third model incorporates China’s Manufacturing 
Purchasing Managers’ Index (PMI), which is published by 
the National Bureau of Statistics of China on a monthly 
basis. This variable is a proxy for the state of the Chinese 
economy in general and the health of its industrial sector 
in particular. China is the largest global importer and one 
of the biggest producers of iron ore, as a result of which 
its economic development is expected to impact world 
iron ore prices. The other endogenous variables are the 
same as in the first two models, except for the exclusion 
of Brazil’s export variable, and the optimal testing-based 

https://www.weather25.com/
https://cds.climate.copernicus.eu/#!/home
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number of lags for such a specification equals five. In 
contrast, the fourth model is more of a combination of the 
aforementioned specifications. This two-lag VAR model 
consists of the real price of iron ore, changes in steel 
production in China, and changes in the Baltic Dry Index, 
China’s Manufacturing PMI, Brazil’s iron ore exports, and 
in the U.S. CPI. Exogenous variables include constants (as 
in other models) and the recession dummy for the U.S., 
i.e. an NBER-based recession indicator, is available from 
the FRED database of the FRB of St. Louis. The recession 
dummy takes the value of 1 from January 2008 through 
June 2009 and from March 2020 through April 2020, 
which represents the recessionary periods in the U.S. 
Again, where necessary, the variables are transformed to 
log-difference or first difference forms or are winsorized to 
smooth out the outliers (like the change in Brazil’s iron ore 
exports). Depending on data availability, and after some 
adjustments to the series, the estimation samples start 
either in April 2004, March 2005, or June 2005 and run 
through February 2023, as in all studied commodity groups. 

3.5. Steel Price Forecasting
In order to model and predict global steel prices based 

on market fundamentals, we apply the VECM methodology. 
Error-correction is needed since there are cointegration 
relationships between the variables. As mentioned above, 
the global steel and iron ore markets are very interrelated, 
so the explanatory variables for steel prices are very similar 
to those used in iron ore forecasting. 

As Ukraine used to be among the global top ten largest 
steel exporters (before russia’s full-scale invasion of Ukraine 
and the port blockade), we are interested in forecasting 
prices for Ukrainian steel. As a benchmark, we use the 
monthly averages of daily steel billet prices, FOB Ukraine. 
For a period after 24 February 2022 (the start of the full-
scale war), we use proxy prices for Ukrainian steel calculated 
based on either Turkey C&F steel billet prices (up until 
October 2022) or the Black Sea billet FOB UA prices. After 
calculating the monthly average steel price, we then take the 
log of it as we do for other price variables.

Explanatory variables in the first VECM include the 
price of iron ore fines (CFR China 62% Fe) and the price of 
coal (Australian thermal coal, FOB Newcastle, 6,000 kcal/
kg futures price from the World Bank database) as inputs 
used to produce steel. Moreover, we use the Brent oil 
price (expressed in logs) as a determinant of global steel 
prices. There is a growing bulk of literature suggesting 
that there are cross-market price links between various 
commodity groups that can be used to predict prices (see, 
e.g., Campiche et al., 2007, Nazlioglu and Soytas, 2012, 

Ding and Zhang, 2020). More specifically, there is empirical 
evidence of crude oil prices having long-term cointegration 
relationships with other commodity prices and having an 
impact on their prices. Moreover, it is believed that there is 
a unidirectional relationship between crude oil and steel as 
suggested, for instance, by Chou et al. (2012) and Asmoro 
(2017). 

Given the interrelations between the iron ore and steel 
markets, we also include changes in the Baltic Dry Index 
and China’s Manufacturing PMI into this model, just as we 
did in the VARs for iron ore prediction. This VECM has one 
lag determined by the lag length selection tests and also 
incorporates a recession dummy in its exogenous variables. 
The second model is simplified for analytical purposes – it 
only includes the prices of steel and iron ore and the Baltic 
Dry Index. The optimal number of lags equals one, and there 
are no exogenous variables included. The third VECM is 
the price-only model as it includes the prices of steel, iron 
ore, coal and crude oil, and no other explanatory variables. 
This specification requires two lags, as chosen by the AIC 
and BIC statistical criteria and lag exclusion tests. Finally, 
the fourth model is a two-lag VECM incorporating steel, iron 
ore and coal prices, changes in the Baltic Dry Index and the 
manufacturing PMI for China, as well as a recession binary 
variable. After making necessary adjustments to the data and 
taking into account the time span of the data, the estimation 
samples start either in August 2008 or September 2008 and 
last until February 2023.

4. RESULTS
In this section, we provide the results of the forecasting 

performance of the models used to predict commodity 
prices six months ahead. We run the models to forecast oil 
and natural gas prices from the beginning of the models’ 
estimation samples until the end of 2015 and then do out-
of-sample six-month-ahead forecasting simulations starting 
from January 2016 through February 2023. For the models 
that forecast iron ore and steel prices, the out-of-sample 
exercise starts in January 2018 to better adjust the models 
to changes in the pricing regime of iron ore prices. Next, 
we calculate the root mean square errors (RMSEs) of all 
individual models based on forecast simulations and divide 
them by the RMSEs of the respective random walk (RW) 
models. Figures 2–5 (Supplementary Materials) depict the 
results of the out-of-sample forecast simulations six months 
ahead for the nominal prices of the four commodities of 
interest. Tables 1–4 provide a summary of the relative 
RMSEs of the models for one- to six-month-ahead horizons. 
Values below 1, highlighted in green, mean that the RMSEs 
of the given models are lower than the random walk 
RMSEs. This means that the forecasting power of a given 

Table 1. The RMSEs of Individual Models Relative to RW RMSEs – Crude Oil

# of lags 
Forecast horizon, months ahead

1 2 3 4 5 6

VAR_1 6 0.939 0.776 0.701 0.737 0.823 0.803

VAR_2 6 1.067 0.826 0.827 0.816 0.896 0.875

VAR_3* 6 1.052 0.818 0.816 0.819 0.912 0.907

VAR_4* 3 1.005 0.772 0.747 0.735 0.775 0.775

* VAR models 3 and 4 use a different U.S. CPI index (non-seasonally adjusted index, 2010=100), which also causes variations in real prices. 
Therefore, the RMSEs of these models are compared to the RMSEs of a RW model, which also uses real prices calculated on the basis of 
a non-seasonally adjusted CPI index, whereas models 1 and 2 are compared to a RW model based on comparable real prices (where the 
CPI index, s.a., 1982-1984=100 is a deflator).
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model is higher than that of an RW benchmark. Values 
above 1, highlighted in red, indicate that the given models 
fail to outperform the respective RW models over the given 
forecast horizons. The lowest relative RMSEs over each of 
the six horizons are presented in bold, indicating the best-
performing models.

The models that predict oil prices demonstrate good 
forecasting performance over almost all forecasting horizons 
(Table 1). It is only in the one-month-ahead forecast that the 
random walk outperforms three out of four of the selected 
models. Note that models VAR_3 and VAR_4 use real oil 
prices calculated based on a different CPI index compared 
to models 1 and 2 (see the Data and Methodology section). 
Therefore, in order to make fair conclusions, we divided 
their RMSEs by the RMSEs of a different random walk model, 
which used comparable real prices. 

The first model, which uses oil production, petroleum 
inventories, Kilian’s index, and the CPI index as endogenous 
oil price determinants, improves benchmark RW forecasts 
over all forecast horizons, and is the best-performing 
model to predict Brent prices one and three months ahead. 
VAR model number 4, despite having the smallest number 
of lags – i.e. 3 lags, has the smallest number of forecast 
errors over two-, four-, five- and six-month-ahead horizons 
among all the other models. This may suggest that, in the 
case of the short-term forecasting of monthly oil prices, the 
information contained in only three lags of fundamentals 
might be enough to predict the future movement of 
oil prices. This finding is new and adds to the modern 
techniques of oil price forecasting, which normally rely on 
up to 12 lags of information. Models 2, 3 and 4 also have 
an estimation sample that is almost five years smaller than 
the sample of the first model due to the limited availability 
of the manufacturing PMI index that they use instead of 
Kilian’s IGREA.

All of the models used to predict TTF gas prices 
in the short run outperform the RW benchmark model 
during all forecast periods, as shown in Table 2. Figure  3  
(Supplemenary Materials) presents the results of the  
out-of-sample forecasting exercise.

The most consistent results are produced by the two-lag 
VECM model, which uses the weather conditions variable – 
degree days – as an exogenous one. This once again 
proves the importance of air temperature conditions for gas 
price forecasting. It is also worth noting that models 3 and 
4, which use crude oil-related variables (such as the change 
in oil production and petroleum inventories) and general 
demand-side variables (such as Kilian’s index and the PMI) 
and do not use gas-specific market fundamentals, also 
show good results and even outperform other models over 
some forecast horizons. These results add to the empirical 
evidence of the crude oil and natural gas markets being 

highly interrelated, making room for further investigation of 
cross-market energy price predictions.

Tables 3 and 4 present the relative RMSEs of the models 
that predict the prices of iron ore and steel, respectively, 
while Figure 4 and 5 (Supplemenary Materials) show 
the forecasting simulations of nominal prices. For these 
two commodities, we also test the models’ performance 
compared to a random walk process. However, we include 
simple AR(1) models for comparison, since they are often 
used as a benchmark to test the forecasts of metal prices, 
or are extended to ARIMA models as standalone forecasting 
techniques (Pincheira and Hardy, 2019).

All of the selected models that forecast global iron 
ore prices in general produce better forecasts than both 
RW and AR(1) models. VAR_1 and VAR_2, which have the 
same specifications but a different lag number, are the best-
performing approaches. This can be explained by these 
models having the most comprehensive set of supply and 
demand variables, including China’s steel production, the 
Baltic Dry Index of freight rates and Brazil’s exports of iron 
ore. As expected, the model with two lags produces better 
results over longer horizons. Model 4, which incorporates 
the recession dummy, also proves reliable. At the same 
time, model 3, which excludes Brazil’s ore exports, performs 
worse than other models, despite having the highest lag 
number. However, the chart of out-of-sample simulations 
for model 3 indicates that it might have a better predictive 
power for more unstable periods, similar to those that we are 
currently observing on the markets, while other models are 
relatively better for stable periods (Figure 4 in Supplemenary 
Materials).

VECM number 1, which is used to predict steel prices, 
outperforms other approaches over half of the forecast 
periods. The model includes the prices of iron ore, coal and 
oil, the freight rates index, China’s manufacturing sector 
proxy, as well as the recession dummy. It is also noteworthy 
that this VAR model has the smallest possible number of 
lags and shows better results than the two-lag models. AR(1) 
only slightly outperforms model 1 over one- and two-month 
horizons, but lags behind over longer forecast periods. 
Interestingly, the two-lag price-only model (VECM_p_3) 
which only uses the prices of iron ore, coal, and crude oil 
to predict steel prices, has the smallest number of RMSEs 
six months ahead (Table 4). This finding can be further 
developed and tested in future research into the longer-term 
forecasting of steel prices.

The results of individual models indicate that our choice 
of forecasting techniques and explanatory variables is 
reliable and the models can be used to predict commodity 
prices, at least in the short run. Moreover, given the generally 
high performance of these models and their varying forecast 

Table 2. The RMSEs of Individual Models Relative to RW RMSEs – Natural Gas

# of lags
Forecast horizon, months ahead

1 2 3 4 5 6

VAR_1 3 0.840 0.689 0.840 0.917 0.855 0.916

VAR_2 3 0.845 0.681 0.820 0.927 0.836 0.897

VAR_3 12 0.791 0.684 0.863 0.861 0.855 0.770

VAR_4 6 0.823 0.691 0.850 0.834 0.826 0.766

VECM_DD_5 2 0.829 0.695 0.802 0.826 0.826 0.850
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precision over different periods, it makes sense to apply 
a combination approach and to merge the models’ benefits 
to generate a combined baseline forecast for each of the 
commodities.

5. CONCLUSIONS
This study offers a relatively simple hands-on approach 

to forecasting the global prices of crude oil, natural gas, iron 
ore, and steel. In line with the modern literature, we apply 
VAR and VECM approaches based on demand and supply 
factors to forecast commodity prices over the short term 
period. This paper adds to the literature in a few ways. 

First, unlike most other similar papers, the forecasting 
models in this paper focus on predicting monthly rather than 
quarterly prices (while being developed from the central 
bank’s perspective). The rationale behind this is that monthly 
time series are more detailed and contain more information 
about price movements. Thus, generating monthly rather 
than quarterly forecasts increases forecast precision. 
Moreover, generated monthly price forecasts can then be 
used to construct more reliable quarterly projections than 
those derived from smoothed quarterly data. This, in turn, 
could improve the forecast performance of other central 
banks’ macroeconomic quarterly projection models that use 
commodity price forecasts as inputs or assumptions.

Second, in our models we forecast real prices as 
well as inflation indices in order to construct forecasts of 
nominal commodity prices, which are of greater interest 
to us. Furthermore, this study focuses on spot prices, and 
does not include futures-based predictions, which are still 
popular among many central banks and forecasters, despite 
their being rather inaccurate under the current conditions. 
There is no need to include such models in the set of our 
forecasting techniques as reliance on futures prices does 
not necessarily provide robust outcomes for forecasting 
spot prices.

Third, our findings suggest that, among the individual 
models in each of the four commodity groups, the models 
with the most balanced and comprehensively chosen 
fundamental explanatory variables, which cover supply 

and demand fundamentals equally, prove the most reliable 
in terms of forecasting. These fundamentals, which are 
important for commodity price prediction, include, inter alia, 
stock changes, changes in commodity production volumes, 
export volumes by the largest players, changes in the 
manufacturing sector of the largest consumers, the state of 
global real economic activity, freight rates, and a recession 
indicator. Seasonal factors play an important role in shaping 
commodity prices as well. Moreover, Kilian’s index of 
global real economic activity is found to be a useful proxy 
for global demand and a reliable input in forecasting both 
energy and metal prices. In the case of iron ore and steel 
prices, developments in the Chinese economy prove to be 
essential inputs.

Furthermore, we demonstrate that when predicting energy 
and metal prices in the short run, the models with smaller lag 
orders tend to outperform those with a higher number of lags, 
which is a new finding in the literature, to our knowledge. 
While literature usually suggest using up to 12 lags (as a rule 
of thumb in vector models to predict monthly commodity 
prices), we show that the most important information in terms 
of short-term price prediction can be found in the most recent 
historical data, and there is no need to overload the models. 
The conducted lag length selection tests and information 
criteria demonstrate that our models require no more than 
six lags. Moreover, the models with a smaller number of lags 
in general show higher forecast accuracy, as can be seen 
from the RMSE tables. This finding can be used and further 
developed by both researchers and forecasters with the 
purpose of finding the best-fitting forecasting techniques.

Finally, we conclude that selected individual models, 
while showing standalone high performance, have varying 
forecast accuracy over different periods. Our findings 
show that no individual model outperformed the others 
consistently throughout the forecast horizon. Thus, it might 
make sense to apply a combination approach to merge the 
models’ benefits and generate a combined baseline forecast 
for each of the commodities.

The methodology used in this study is a hands-on 
approach to forecasting commodity prices in the short run. 
That notwithstanding, there is room for further research and 

Table 4. The RMSEs of Individual Models Relative to RW RMSEs – Steel

# of lags 
Forecast horizon, months ahead

1 2 3 4 5 6

AR(1) 1 0.8324 0.6943 0.6855 0.7357 0.7443 0.7126

VECM_1 1 0.8918 0.7014 0.6802 0.7275 0.7390 0.7073

VECM_2 1 0.9001 0.7521 0.7620 0.8047 0.7801 0.7122

VECM_p_3 2 0.9592 0.9286 0.8478 0.8052 0.7456 0.7031

VECM_4 2 1.0598 0.8798 0.8586 0.9515 0.8573 0.7536

Table 3. The RMSEs of Individual Models Relative to RW RMSEs – Iron Ore

# of lags
Forecast horizon, months ahead

1 2 3 4 5 6

AR(1) 1 0.7893 0.7449 0.6906 0.6296 0.6801 0.6932

VAR_1 2 0.8190 0.7719 0.6916 0.6260 0.6747 0.6926

VAR_2 1 0.7856 0.7451 0.6895 0.6273 0.6794 0.6931

VAR_3 5 0.9374 0.8373 0.7445 0.6957 0.7141 0.7178

VAR_4 2 0.8414 0.7772 0.7084 0.6378 0.6840 0.6956
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APPENDIX A. TABLES

Table 5. Augmented Dickey-Fuller (ADF) Test Results

Variable
tau-stat
(p-value)

Brent real price 1
-2.840
(0.185)

Brent real price 1, dlog
-10.048***

(0.000)

Brent real price 2
-2.811
(0.195)

Brent real price 2, dlog
-10.061***
(0.000)

Petroleum inventories, dlog
-3.374***
(0.001)

Change in petroleum inventories, % mom
-3.135***
(0.002)

Crude oil production, dlog
-13.359***

(0.000)

Change in crude oil production, % mom
-11.583***
(0.000)

Manufacturing PMI, Global
-4.490***
(0.002)

U.S. CPI_1 (s.a. index, 1982-1984=100)
0.723
(1.000)

U.S. CPI_1 (s.a. index, 1982-1984=100), dlog
-9.165***
(0.000)

U.S. CPI_2 (n.s.a. index, 2010=100)
-1.329
(1.000)

U.S. CPI_2 (n.s.a. index, 2010=100), dlog
-10.061***
(0.000)

Kilian index (IGREA)
-2.819***
(0.010)

TTF natural gas, nominal price
-4.528***
(0.000)

TTF natural gas, nominal price, dlog
-3.000***
(0.003)

TTF natural gas, real price
-6.047***
(0.000)

TTF natural gas, real price, dlog
-2.887***
(0.004)

Gas stock changes, Netherlands
-4.597***
(0.001)

Supply of natural gas, Netherlands
-2.357
(0.401)

Supply of natural gas, Netherlands, first difference
-8.593***
(0.000)

Iron ore real price
-3.032
(0.126)

Iron ore real price, dlog
-9.827***
(0.000)

Steel nominal price
-4.445***
(0.003)
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Variable
tau-stat
(p-value)

Coal, Australian, nominal price
-4.309***
(0.004)

Change in China's crude steel production, % mom
-5.229***
(0.000)

Manufacturing PMI, China
-7.096***
(0.000)

Baltic Dry Index
-7.065***
(0.000)

Change in Baltic Dry Index, % mom
-13.306***

(0.000)

Change in Brazil's iron ore exports, winsorized, % mom
-15.659***

(0.000)

*** denote significance at the 1% level.

Table 5 (continued). Augmented Dickey-Fuller (ADF) Test Results


