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Abstract The ability to produce high-quality inflation forecasts is crucial for modern central banks. Inflation forecasts 
are needed for understanding current and forthcoming inflation trends, evaluating the effectiveness of 
previous policy actions, making new policy decisions, and building the credibility of a central bank in the 
eyes of the public. This motivates a constant search for new approaches to producing inflation forecasts. 
This paper analyses the empirical performance of several alternative inflation forecasting models based 
on structural vs. data-driven approaches, as well as aggregated vs. disaggregated data. It demonstrates 
that a combined ARMA model with data-based dummies that uses the disaggregated core inflation data 
for Ukraine allows to considerably improve the quality of an inflation forecast as compared to the core 
structural model based on aggregated data.
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1. INTRODUCTION
A high-quality inflation forecast is a must-have for a 

central bank as it provides the foundation for many of its 
decisions and policy actions. Besides, an accurate forecast 
boosts the credibility of a central bank by enhancing its 
reputation as a trustworthy analytical center and a force 
to reckon with, which in turn could help to influence the 
public's expectations, which are among the fundamental 
determinants of economic behavior.

For this reason, many central banks develop and use 
a wide range of econometric models, starting from small 
univariate models for separate macroeconomic series, to 
big structural models, which contain complex relationships 
between various parts of the economy.  

Small data-driven models can be particularly useful for 
short-horizon (up to six months) forecasting, due to their 
ability to work with a huge amount of data without the need 
to impose strong relationships between economic variables. 
On the other hand, structural models, which are frequently 
based on microfoundations, can serve well in describing 
how the economy works and how shocks are transmitted 

1 From Ukrstat data and reports release calendar on the official State Statistics Service of Ukraine (SSSU) website, ukrstat.gov.ua, “Express reports” section.
2 At the same time, there is general agreement in the literature and among policymakers that monetary policy actions affect inflation with a lag of at least half 
a year. This coincides with the findings of Gruen et al. (1997) and Batini and Nelson (2001), who report about 4-6 quarter lag in the monetary policy effect in the 
US, UK and Australia. This suggests that at any point in time, inflation is already predetermined for the next 6+ months.

between its different parts, but can also be cumbersome and 
have low forecasting ability, in particular over relatively short 
time horizons. 

Short-run inflation forecasts provide information on the 
dynamics of inflation in the nearest future. The data on the 
current level of inflation is revealed only with a lag from 
seven to ten days.1 Therefore, a central bank is keen on 
getting constant updates on where the economy currently is, 
where it is heading and whether the current monetary policy 
strategy is still in line with the set targets.2

This paper focuses on data-driven inflation forecasting 
models. Our main model is based on the Combined ARMA 
(CARMA) framework developed by Huwiler and Kaufmann 
(2013) and currently used by the Swiss National Bank. Each 
of the inflation components is first modeled individually and 
then their forecasts are combined back together into a single 
core inflation estimate. The disaggregation approach allows 
using a rich structure of data on various inflation components. 
Our goal is to evaluate its performance relative to several 
alternative statistical models, which use both aggregated 
and disaggregated data, and to the NBU baseline forecasts, 
based on the structural Quarterly Projection Model (QPM). 
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Our main specification contains dummies, which capture 
periods of excessive volatility and thus help to improve both 
the in-sample fit of the model and its forecasting quality.

One of the most important questions discussed in 
the relevant literature is whether data-driven models can 
outperform structural ones. While the latter are built to 
investigate complex links between different parts of the 
economy, their short-term forecasting abilities are typically 
quite poor (see Grui and Lepushynskyi, 2016). There is also 
no consensus in the literature on how the microfoundation-
based (DSGE) models perform in this regard: while one part 
of the literature shows that such models can produce quite 
good forecasts (see Yau and Hueng, 2019), other authors 
reach the opposite conclusions (see Edge and Gurkaynak, 
2010). This suggests that further comparison of alternative 
models for different data sets is needed to reach more 
definite conclusions.3

Numerous authors demonstrate that data-driven models 
can produce positive results in the context of emerging 
economies. Frequently, standard models are extended 
to reflect peculiarities of the data from these markets due 
to their excessive volatility, structural breaks or other non-
standard data patterns.4 

There is also no agreement in the literature about the 
advantages of the disaggregated (vs. aggregated) approach 
both from the theoretical and the empirical points of view. 
There are two main camps of authors: those who strongly 
support the effectiveness of disaggregation for improving 
the forecast quality, and those who oppose this view. The 
first camp includes, for example, Hendry and Hubrich (2011) 
and Zellner and Tobias (1999). Bermingham and D'Agostino 
(2011) also conclude that the disaggregation technique 
improves forecasting performance. These conclusions are 
based on various autoregressive-type models on the US and 
EU datasets. 

On the other hand, Benalal et al., (2004) demonstrate 
that disaggregation has limited usefulness. This ambiguity 
in the literature indicates that further investigation of this 
question is required. 

This study contributes to the existing literature in several 
ways. First, to the best of our knowledge, there is little 
empirical evidence on the relative forecasting performance 
of ARMA-based models for inflation in developing 
economies. Second, we suggest several specifications of 
dummy variables to capture periods of excessive volatility, 
and show that they can significantly improve the quality of 
the forecasting model. Third, this study is the first attempt 
to investigate empirically the disaggregated Ukrainian 
inflation data in terms of how much forecasting power it has 
relative to the aggregated inflation series. Therefore, this 

3 There is a vast range of other tools to predict inflation: VAR and its Bayesian version, VECM, GARCH, factor models etc. Koop and Korobilis (2012) have 
considered a Dynamic Model Averaging approach to inflation forecasting and have shown that their forecasts are better than the Greenbook forecasts by the 
Federal Reserve Board of Governors. A MIDAS approach makes it possible to work with mixed-frequency data: Schorfheide and Song (2013) have shown that 
using dozens of macroeconomic variables on a quarterly basis, mixed with so-called “real-time,” outperforms a VAR benchmark.
4 For example, Huwiler and Kaufmann (2013) have shown that a combination of data-driven models (Vector Error Correction Model (VECM) for oil and the 
disaggregated Autoregressive Moving Average (ARMA) model for other inflation components) outperform structural models and expert judgment for predicting 
inflation in Switzerland. Stelmasiak and Szafranski (2016) use two different Bayesian Vector AutoRegression (BVAR) approaches for inflation forecasting in 
Poland, paying particular attention to the issue of shifting seasonality (seasonal spikes might appear in 11 or 13 months after the previous one, and cannot be 
captured well by means of simple seasonal adjustment).
5 For example, while during the sample period the total core inflation in Ukraine reached its peak in 2015m03 and the biggest contribution was from the 
exchange rate side (see Faryna, 2016), this was not true for every component, which suggests that the nature of the rapid increase in prices of different goods 
is also an interesting topic for investigation.
6 The NBU obtains its inflation component data from the SSSU. This data is similar to the open-access data available from the SSSU website, www.ukrstat.gov.ua, 
but is more detailed and disaggregated.
7 The other constituents of the CPI are raw food, energy and administratively regulated prices.

paper will contribute to the discussion on the usefulness 
of disaggregated vs. aggregated models by providing new 
empirical evidence.

In addition, we will analyze the statistical features of the 
inflation components, which have a heterogeneous nature. 
The aggregated series make these peculiarities invisible, 
though they can be potentially exploited to improve our 
understanding of the inflation dynamics and forecast.5

The paper is structured as follows. 

• The data description section discusses the main 
features of the data, as well as issues related to changes in 
definitions and data collection methodologies. 

• The methodology section describes what the models 
consist of, how these models are estimated, how the 
forecasts are produced and how they are formally compared 
to each other. 

• The results section contains discussion on the 
comparative empirical performance of the models. 

• The last section concludes and delineates directions 
for future research.

2. DATA DESCRIPTION
The data used in this paper was provided by the NBU.6  

The data contains monthly observations for core inflation 
components from the beginning of 2007 to the end of 2018 
(144 time points in total). Core inflation is calculated based on 
these components of the Consumer Price Index (CPI), which 
have relatively low volatility, experience low influence from 
global prices and are not subject to administrative controls.7 

Figure 1 presents the core inflation dynamics over the 
sample period. As we can see, there was a spike in inflation 
in March of 2015, caused by the economic crisis, which 
started in February and resulted in a drastic (more than 
threefold) devaluation of the national currency in the first 
quarter of 2015.

Two hundred forty components in core inflation are 
divided into four main categories: processed food, services, 
clothes and other. Processed food and clothes include 
most of the goods, that might be purchased in retail stores, 
excluding raw food (meat, fruits, vegetables), administratively 
regulated items (alcohol, cigarettes), and low-weight items in 
the basket (exotic foods, rare services).

 The number of components in each category and their 
weights in the consumption basket are shown in Figure 2. 
Even though all four categories contain more or less the same 
number of components, their weights in the consumption 
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basket are quite different: the weight of the food category 
is much higher. This is consistent with the data from other 
emerging markets, where people tend to spend higher 
shares of their income on food rather than other goods. 

Figures 3 to 6 visualize the most commonly encountered 
data patterns and present inflation dynamics for selected 
components and categories of core inflation. In particular, 
as Figure 3 demonstrates, component 31 (sausages) has 
relatively uniform dynamics over the entire data period 
(without much seasonality, spikes or drops), while in Figure 
4, component 301 (higher education) exhibits many very 
distinct movements that occurred in September. 

 A similar conclusion can be drawn for category 5 (food) 
and category 7 (clothes) in Figures 5 and 6 respectively. The 
former has a much more distinct seasonality pattern in the 
earlier periods than in more recent ones, while the latter 
exhibits a strong seasonality pattern after 2014, which was 
not observed in earlier periods. This can be attributed to the 
changes in the data collection methodology.8

Not all 240 components have recorded prices starting 
from 2007 due to changes in CPI methodology. Seven 
components have data starting only from 2016. These series 
are too short to produce any meaningful coefficient estimates 
and therefore have been dropped from the sample.9 There 
are also 32 series that start in 2012, which have enough 
observations for model estimations.10 The resulting sample 
includes 31,632 observations for 233 components. 

Table 1 contains a basic statistical description of 
the aggregated core inflation series, as well as pooled 
component data (233 series pooled together). The last 
two columns of the table contain a summary of individual 
component means and their standard deviations to shed 
some light on the differences in the dynamics of various 
components.

8 In particular, starting from 2014, the prices of clothes are recorded with seasonal sale discounts, while such discounts were not included in the official statistics 
in previous years.
9 These observations constitute 0.7% of the entire sample of data. The total weight of these series in the core inflation basket is around 2%.
10 The total weight of these series in the core inflation basket is 12.6%.

The table suggests that the unweighted average inflation 
of all the components is around 0.9% per month, the series of 
means are expectedly much less volatile than the pooled data, 
and the standard deviation of the pooled data is more than 
twice as high as the pooled component inflation. This indicates 
that there is a lot of variability in individual components. 
Also, the mean of the pooled series is much higher than its 
median. This suggests that the inflation levels of individual 
components are typically quite low, and the average statistics 
are driven by relatively infrequent large shocks, which most 
likely happened during the crisis period of 2015.

Since we work with monthly data, there is a visible 
seasonality pattern in many of them, including the core 
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Figure 1. Core Inflation, monthly changes.
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Figure 2. Left: the Number of Series in Each Category.
Right: Relative Weight of Categories in the Core Inflation Basket.
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Figure 3. Monthly Inflation for Component #31 – Sausages.
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Figure 4. Monthly Inflation for Component #301 - Higher Education.
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Figure 5. Monthly Inflation for Category #5 - Food.
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Figure 6. Monthly Inflation for Category #7 – Clothes.
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inflation itself (see Figure 1). This seasonality will be taken 
care of by including 12 to 13 seasonal dummies in the 
models.11 

For some series, such as clothes (see Figure 6), the 
seasonality has become much more pronounced starting 
from 2014.12 To deal with this structural break in the data, 
we have evaluated all model coefficients for the clothes 
components in using the post-break period only. 

To produce an aggregated inflation estimate, these 
disaggregated components must be combined into 
categories and then into one total core inflation indicator. 
To do this, weights should be assigned to each of them. 
There are official weights that are used by the SSSU to 
calculate the core inflation. However, these weights change 
constantly and are not known in advance. Our approach is 
to use a set of weights, produced by NBU statisticians, for 
internal inflation estimation and forecasting purposes. These 
weights are updated on a much less frequent basis that the 
SSSU weight and they track the latter closely.  Therefore, in 
our forecasting exercise, we use the most recently available 
values of these “static” weights.

To investigate how important is the resulting “aggregation 
bias” due to differences in official and static weights, we 
have plotted actual core inflation and constructed core 
inflation (based on static weights) in Figure 7. The differences 
between these two series in most cases are quite small13, 
especially in the most recent period, and since we use the 
same weights for all models, the relevance of our general 
conclusions should not be affected by the weights error 
issue.

11 The thirteenth lag allows for capturing a floating seasonal pattern, such as a shifting harvest.
12 As mentioned in footnote 5, before 2014 it was common to observe hikes in reported prices just before sales started, so the actual changes in consumer 
prices could be lower than indicated in the sales price. After 2014, the new methodology with the inclusion of discounts brought a visible seasonality pattern to 
inflation, with the source being mostly in the clothes category.
13 The root mean squared error (RMSE) between the two series is about 0.09, which is less than 1/10th of the average core inflation in the sample period.

3. METHODOLOGY
The empirical methodology of this paper is based on 

three core elements: 

• The use of the disaggregated inflation component series;

• ARMA modelling framework; 

• Dummies to capture periods with unusually large shocks.

The key feature of our approach is the use of 
disaggregated series, which means that instead of direct 
core inflation forecasting, its components are predicted 
first and then reaggregated back into core inflation. This 
allows for using all available information on individual 
inflation components. Also, it captures co-movements of 
components, which are due to the complementarity and the 
substitution effects.

The predicted core inflation ŷ in period τ is calculated as:

 

𝑦𝑦"# = 	&𝑤𝑤( ∗ 𝑦𝑦"#(
*

(+,

,	
      

(1)

where k is the index of a component, wk is its weight in the 
basket, p is the total number of components, and ŷτk is the 
forecasted inflation of component k for period τ. 

Equation (1) is generally referred to as the CARMA model 
in the results section of this paper. 

To forecast individual inflation components (and core 
inflation itself as one of the benchmarks in performance 
evaluation exercises), ARMA-type models are employed. 
These models are widely used in modelling time series data 
since many economic variables strongly depend on their 
previous values. 

The classical ARMA model has the following structure:

 

𝑦𝑦"# = 𝛽𝛽& +	)𝛽𝛽* ∗ 𝑦𝑦#,*

-

*./

+)𝛾𝛾1 ∗ 𝜀𝜀#,1

3

1./

,	
      

(2)

Table 1. Descriptive Statistics for Core Inflation and its Components.

 Core inflation
Pooled component 

series
Means  

of components
Standard deviations  

of components

Mean 0.93 0.88 0.88 2.20

Standard deviation 1.25 2.55 0.32 1.30

Minimum -0.36 -22.08 -0.08 0.40

Median 0.60 0.40 0.93 1.81

Maximum 10.80 46.26 1.75 6.89

Observations 144 31,632 233 233
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Figure 7. Official vs Aggregated Core Inflation, monthly.
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where yt is the value of a component/core inflation in  
period t; β0 is a slope coefficient; βi's and γj's are the 
coefficients corresponding to autoregressive and moving-
average factors respectively; and εt-j  is the model residual 
in period t-j.

We identify the number of AR and MA terms for each 
series using the Schwarz (Bayesian) Information Criterion 
(Schwartz, 1978). The classical ARMA model is extended 
by adding dummy variables to account for excessive 
market movements. An ARMA model with a dummy has the 
following structure:

𝑦𝑦"# = 𝛽𝛽& +	)𝛽𝛽* ∗ 𝑦𝑦#,*

-

*./

+)𝛾𝛾1 ∗ 𝜀𝜀#,1

3

1./

+ 𝛼𝛼 ∗ 𝐷𝐷#,	
        

(3)

where Dt is a dummy variable. 

Once a dummy variable is added to a classical ARMA 
model, it essentially turns into an ARMAX (ARMA with 
exogenous variables) model. Kongcharoen and Kruangpradit 
(2013) used such a model to forecast exports in Thailand. 
Their results show that an ARMAX-type model significantly 
outperforms a simple ARMA approach in most exercises. 
Bos, Franses and Ooms (2001) also demonstrated, using 
ARMAX models, superior results in forecasting the post-war 
core inflation in the US.

This paper uses two alternative approaches to defining 
dummy variables: the non-zero dummies are assigned 
to 1) periods in which component inflation levels have the 
highest deviations from their means, or 2) periods in which 
no-dummy model errors are the highest. 

To illustrate the importance of the first dummy type, let’s 
assume that the data contains a single, but big shock at 
some point in time. With the quadratic optimization function, 
the outlier will have a strong impact on coefficients and, 
therefore, predicted values. The dummy captures these 
spikes and prevents systemic shifts in forecasts, smoothing 
out the effect of the outliers.

On the other hand, a data series might have a predictably 
volatile structure, for example, if there is a strong seasonal 
pattern. At the same time, there might also be some other 
truly unpredictable large shocks ("extreme events"), the 
effect of which can be quite distortive but requires a different 
treatment than the one offered above. The residual-based 
approach to a dummy is better suited in handling such a 
situation.

We have considered five possible sub-definitions for 
both types of dummies: the dummy takes the value of one 
when the highest or two highest or three highest deviations 

14 In theory, a more appropriate approach to selecting the best model specification is to consider all possible combinations of AR/MA lags and dummy definitions 
and then choose the one with the lowest SIC. However, this requires considerable computational power, which the authors currently have no access to.

from the mean are observed (see Figure 8), or the dummy 
takes the value of one whenever an observation is located 
further from the mean than three or four standard deviations 
(see Figure 9). The first three definitions work best for cases 
in which there are very few strong spikes in the data (e.g., 
the effect of crisis). However, if the spikes are much more 
common, this approach will be powerless in improving the 
models’ fit to the data. 

To illustrate the implications of the first and the third sub-
definition for a dummy (i.e. the dummy takes the value of one 
when the highest deviation or three highest deviations from 
the mean are observed), Figures 10 and 11 plot the number 
of non-zero values for respective dummies for all inflation 
components. As we can see, the most turbulent period is 
March-April 2015, when many inflation components exhibit 
extremely high deviations from their means.

The last two sub-definitions (i.e., the dummy takes the 
value of one whenever an observation is located further 
from the mean than three or four standard deviations) allow 
different series to have a different number of associated 
non-zero dummy values. Series characterized by occasional 
spikes are treated differently from series with no big spikes. 
Therefore, this approach is more flexible. 

To identify which dummy works best for each series, we 
once again calculate SIC coefficients for each definition of a 
dummy and choose the specification with the lowest value 
of the criterion.14 
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Figure 8. Example of "Deviation from the Mean” Dummy.
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Figure 9. Example of “Deviation in Residuals” Dummy.

0
20
40
60
80
100
120
140

20
0
7M

0
1

20
0
7M

0
7

20
0
8M

0
1

20
0
8M

0
7

20
0
9M

0
1

20
0
9M

0
7

20
10
M
0
1

20
10
M
0
7

20
11
M
0
1

20
11
M
0
7

20
12
M
0
1

20
12
M
0
7

20
13
M
0
1

20
13
M
0
7

20
14
M
0
1

20
14
M
0
7

20
15
M
0
1

20
15
M
0
7

20
16
M
0
1

20
0
7M

0
1

20
0
7M

0
7

20
0
8M

0
1

20
0
8M

0
7

20
0
9M

0
1

20
0
9M

0
7

20
10
M
0
1

20
10
M
0
7

20
11
M
0
1

20
11
M
0
7

20
12
M
0
1

20
12
M
0
7

20
13
M
0
1

20
13
M
0
7

20
14
M
0
1

20
14
M
0
7

20
15
M
0
1

20
15
M
0
7

20
16
M
0
1

0
20
40
60
80
100
120
140
160
180
200

Figure 10. The Number of Inflation Components with Non-Zero 
Dummies of the First Type (the dummy is equal to one when the data 
point corresponds to the highest deviation from the component’s 
mean).
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Figure 11. The Number of Inflation Components with Non-Zero 
Dummies of the Third Type (the dummy is equal to one when the 
data point corresponds to the highest, the second-highest or the 
third-highest deviation from the component’s mean).
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 When building forecasts, we assume that the dummy 
variables for the forecasted periods are all equal to zero (no 
abnormal shocks).

To evaluate the forecasting performance of alternative 
model specifications, we calculate pseudo out-of-sample 
rolling-window forecasts for each of them and then construct 
two summary statistics for these forecasts: 1) their RMSEs, 
and 2) Diebold-Mariano-West (DMW) statistics for the relative 
forecasting performance test.

Overall, each model produces 19 forecasts starting from 
2017m1. We chose this starting point for the forecasting 
exercise since it allows to focus on a relatively calm period 
(at least one year after the crisis of 2015), which is consistent 
with setting the predicted values for dummy variables to 
zeroes. 

The Diebold-Mariano-West test (Diebold and Mariano, 
1995, and West, 1996) is a classical test for this. It determines 
whether the difference between forecast errors (for different 
forecasts) is significant. The algorithm calculates the 
quadratic (to be consistent with RMSE) difference between 
predicted and actual values.

This test suffers strongly if the forecast horizon is small, 
which is the case for this exercise. It tends to give high 
p-values and does not reject the hypothesis about forecasts’ 
similarity. Therefore, if the results are not significantly 
different, it says little about the real relationship between 
two predictions. However, a positive result is evidence of the 
very strong diversity.

The model proposed in this paper aims to enhance the 
forecasting toolbox of the NBU, so we consider the NBU’s 
official inflation forecasts in 2017-2018 as a benchmark.15  
These forecasts are made public only on a quarterly basis; 
however, monthly forecasts are also generated for internal 
use, and they were made available to us to be used within 
this study.16 The official forecasts may incorporate inputs 
from various models and expert judgements but, generally, 
are based on simulations of the NBU's core Quarterly 
Projection Model (QPM).

The QPM is a semi-structural New Keynesian small open 
economy model17, in which different parts of the economy 
are connected via a so-called transmission mechanism. 
The model is widely used for explanatory purposes, policy 
analysis and medium-term forecasting.18

4. RESULTS
As explained in the methodology section, overall we 

estimate 33 models that produce forecasts: 11 ARMA models 
for core inflation (one without dummies and 10 for alternative 
dummy specifications), 11 CARMA models for categories, and 

15 Another benchmark that we considered was a random walk model. However, its performance was so poor that we decided to exclude it from the paper 
entirely.
16 Another option is to transform the results of other models from monthly to quarterly, but then we encounter the problem of an extremely low number of 
observations (about six in total).
17 The four main equations in the model are Aggregate Demand, Price Phillips curve, Hybrid Uncovered Interest Rate Parity and the Monetary Policy rule. 
Equations are given in gaps form, built via the Kalman filter. All coefficients are calibrated to incorporate expert judgements on the reaction of the Ukrainian 
economy to shocks, and to be consistent with other similar models for world economies. Monetary policy and the economy are linked through the interest rate 
and exchange rate transmission channels.
18 More details about the model architecture, methodology, data, calibration, analysis and forecasting procedures might be found in Grui and Vdovychenko 
(2019).
19 Appendix A contains the results for all considered model specifications.
20 In addition to the DMW test, we also followed Diebold and Mariano (1995) and did sign and Wilcoxon small-sample tests. The results are similar to the ones 
presented in Table 3. However, we have also found some, albeit weak, evidence that disaggregated models with dummies produce better long-term (five and 
six month ahead) forecasts that the benchmark.

11 CARMA models for components. The rolling-window, one- 
to six-month forecasts produced by these models are then 
compared to benchmark forecasts, which come from the 
NBU baseline model. 

Table 2 reports root mean squared prediction errors 
(RMSPEs) for 10 selected models: the benchmark model 
(NBU), three no-dummy models (one for each level of 
disaggregation), two best models with dummies for 
aggregated core inflation (one  from the cohort of five 
mean-based dummy specifications and one from the cohort 
of five residual-based specifications), two best models for 
disaggregated category-level data, and two best models 
for disaggregated component-level data.19 The criterion for 
choosing the “best” models for each of the cohorts was the 
lowest RMSE-based in-sample fit to the training data (the 
part of the sample used to estimate model parameters). 

The table suggests that component-based CARMA 
models have the lowest RMSEs among all the models, 
and adding dummies helps to reduce the forecasting 
errors considerably. This suggests that the disaggregation 
approach is indeed effective in terms of increasing 
forecasting accuracy, and the precision level increases with 
the level of disaggregation. Interestingly, the semi-structural 
model shows lower RMSEs than the data-driven ARMA 
model for core inflation (both with and without dummies). 
Therefore, it is the disaggregation feature of CARMA, which 
more than compensates for the drop in performance of 
the aggregated statistical vs. structural model. Also, the 
disaggregated models with dummies are the only models 
that consistently produce lower predicted RMSEs for all 
forecasting horizons and all dummy specifications, while 
other models outperform the NBU forecast for only some of 
the horizons (see Appendix A).

The next step is to formally test for the difference in the 
forecasting performance of the models. Table 3 contains 
p-values of the DMW test for model forecasting abilities 
against the benchmark (NBU model). 

The table shows that in all but a few cases the p-values 
of the test are quite high (above 10%). Formally, this indicates 
that there are no significant differences between the 
benchmarks and selected model forecasts. However, since 
there are only 19 observations in the sample of forecasts, the 
power of the test is expected to be quite low. Still, there is 
evidence that the components-based CARMA with dummy 
produces better forecasts for short horizons (one month 
ahead) than the semi-structural model.20

Overall, taking into account data limitations and therefore 
expectedly low power of tests, we believe that these results 
support the claim that the disaggregated data analysis can 
considerably improve inflation forecasting.
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5. CONCLUSIONS
The existing demand for well-performing short-run 

forecasting data-driven models is partially satisfied by the 
model developed in this paper. It performs well on Ukrainian 
data and can enhance the NBU forecasting toolbox. It also 
outperforms some benchmarks, such as univariate ARMA for 
core inflation and Combined ARMA for components without 
dummies, which is in line with the results of Huwiler and 
Kaufmann (2013). Also, the results show that disaggregation 
improves model performance. So, the paper contributes to 
this discussion as well.

The data used in this study contain several issues that 
complicate the estimation of any model. These issues can 
be attributed to the transitional nature of the Ukrainian 
economy. Among them are strong structural shocks in 
its recent history. However, as the paper demonstrates, 

the suggested model is flexible enough to deal with such 
problems and to produce reasonable forecasts.

There are several directions for further model 
development. For example, some clustering techniques 
might be used over space with distances between inflation 
series. Such an approach can assign series with similar 
dynamics into clusters and extract additional information on 
links between them, which can potentially improve model 
performance even further. 

In addition, some exogenous variables can potentially 
be included in the models. These could improve prediction 
quality because inflation is likely to be driven by other 
economic variables as well. However, in this case, the model 
would face the problem of obtaining forecasts of these 
exogenous variables to be used as inputs for the inflation 
forecasting exercise.

Table 2. RMSPEs of Forecasts for Selected Models. 

Forecast 
horizon 
(months 
ahead)

Benchmarks
CARMA without 

dummies
CARMA with dummies

NBU 
model

ARMA  
for a total 

core

ARMA for the total 
core with dummy

Compo-
nents

Cate-
gories

Components Categories

1  
highest, 
mean

2  
highest, 
mean

1  
highest, 
mean

3  
highest, 
residuals

2  
highest, 
mean

2  
highest, 
residuals

1 0.329 0.332 0.337 0.334 0.219 0.249 0.180 0.201 0.228 0.229

2 0.394 0.448 0.450 0.436 0.302 0.340 0.241 0.245 0.310 0.319

3 0.365 0.515 0.500 0.503 0.337 0.409 0.253 0.261 0.360 0.369

4 0.370 0.521 0.505 0.520 0.349 0.445 0.275 0.269 0.391 0.402

5 0.429 0.507 0.493 0.518 0.342 0.439 0.276 0.263 0.393 0.403

6 0.444 0.495 0.481 0.500 0.334 0.414 0.263 0.254 0.376 0.388

Table 3. DMW Test for Different Models Compared to the NBU Semi-Structural Model Benchmark, p-value. 

Forecast 
horizon 
(months 
ahead)

Benchmarks
CARMA without  

dummies
CARMA with dummies

ARMA  
for a total 

core

ARMA for a total  
core with dummy

Compo-
nents

Cate- 
gories

Components Categories

1  
highest, 
mean

2  
highest, 
mean

1  
highest, 
mean

3  
highest, 
residuals

2  
highest, 
mean

2  
highest, 
residuals

1 0.11 0.82 0.80 0.10 0.13 0.06 0.09 0.11 0.10

2 0.36 0.97 0.96 0.30 0.39 0.16 0.20 0.25 0.31

3 0.53 0.88 0.89 0.40 0.59 0.13 0.21 0.40 0.39

4 0.60 0.77 0.83 0.39 0.65 0.10 0.16 0.50 0.48

5 0.57 0.71 0.79 0.39 0.57 0.15 0.18 0.49 0.51

6 0.49 0.64 0.72 0.35 0.38 0.15 0.18 0.40 0.45



18

D. Krukovets. O. Verchenko / Visnyk of the National Bank of Ukraine, 2019, No. 248, pp. 11–20

REFERENCES
Batini, N., Nelson, E. (2001). The lag from monetary policy 

actions to inflation: Friedman revisited. Discussion Paper, 6. 
Bank of England. Retrieved from https://www.lancaster.
ac.uk/staff/ecajt/inflation%20lags%20money%20supply.pdf

Benalal, N., Hoyo, J., Landau, B., Roma, M., Skudelny, F. 
(2004). To aggregate or not to aggregate? Euro-area inflation 
forecasting. Working Paper Series, 374. European Central 
Bank. Retrieved from https://www.ecb.europa.eu/pub/pdf/
scpwps/ecbwp374.pdf

Bermingham, C., D’Agostino, A. (2011). Understanding 
and forecasting aggregate and disaggregate price 
dynamics. Working Paper Series, 1365. European Central 
Bank. Retrieved from https://www.ecb.europa.eu/pub/pdf/
scpwps/ecbwp1365.pdf

Bos, C., Franses, P., Ooms, M. (2002). Inflation, 
forecast intervals and long memory regression models. 
International Journal of Forecasting, 18(2), 243-264.  
https://doi.org/10.1016/S0169-2070(01)00156-X

Diebold, F., Mariano, R. (1995). Comparing predictive 
accuracy. Journal of Business and Economic Statistics, 13(3), 
253-263. https://doi.org/10.1080/07350015.1995.10524599 

Edge, R., Gurkaynak, R. (2010). How useful are estimated 
DSGE model forecasts for central bankers? Brookings 
Papers on Economic Activity, 2. Retrieved from https://www.
phil.frb.org/-/media/research-and-data/events/2012/data-
revision/papers/Edge_Gurkaynak.pdf

Faryna, O. (2016). Nonlinear exchange rate pass-through 
to domestic prices in Ukraine. Visnyk of the National 
Bank of Ukraine, 236, 30-42. https://doi.org/10.26531/
vnbu2016.236.030

Gruen, D., Romalis, J., Chandra, N. (1997). The lags of 
monetary policy. Retrieved from https://www.bis.org/publ/
confp04l.pdf

Grui, A., Lepushynskyi, V. (2016). Applying foreign 
exchange interventions as an additional instrument 
under inflation targeting: the case of Ukraine. Visnyk 
of the National Bank of Ukraine, 2016, 238, 39-56.  
https://doi.org/10.26531/vnbu2016.238.039

Grui, A., Vdovychenko, A. (2019). Quarterly projection 
model for Ukraine. NBU Working Papers, 3/2019. Kyiv: 
National Bank of Ukraine. Retrieved from https://bank.gov.
ua/news/all/kvartalna-proektsiyna-model-dlya-ukrayini

Hendry, D., Hubrich K. (2011). Combining disaggregate 
forecasts or combining disaggregate information to forecast 
an aggregate. Journal of Business & Economic Statistics, 
29(2), 216-227. https://doi.org/10.1198/jbes.2009.07112 

Huwiler, M., Kaufmann, D. (2013). Combining disaggregate 
forecasts for inflation: The SNB’s ARIMA model. Swiss 
National Bank Economic Studies, 7. Retrieved from https://
www.snb.ch/n/mmr/reference/economic_studies_2013_07/
source/economic_studies_2013_07.n.pdf

Kongcharoen, C., Kruangpradit, T. (2013). Autoregressive 
integrated moving average with explanatory variable 
(ARIMAX) model for Thailand export. 33rd International 
Symposium on Forecasting. Seoul.

Koop, G., Korobilis, D. (2012). Forecasting inflation using 
dynamic model averaging. International Economic Review, 
53(3), 867-886. https://doi.org/10.1111/j.1468-2354.2012.00704.x

Schorfheide, F., Song, D. (2013). Real-time forecasting 
with a mixed-frequency VAR. Working Paper, 19712. National 
Bureau of Economic Research. https://doi.org/10.3386/w19712

Schwarz, G. (1978). Estimating the dimension of a model. 
Annals of Statistics, 6, 461-464. https://doi.org/10.1214/
aos/1176344136

Stelmasiak, D., Szafranski, G. (2016). Forecasting the Polish 
inflation using Bayesian VAR models with seasonality. Central 
European Journal of Economic Modelling and Econometrics, 
CEJEME, 8(1), 21-42. Retrieved from: http://cejeme.org/publis
hedarticles/2016-24-25-635945306981718750-3327.pdf  

West, K. (1996). Asymptotic inference about predictive 
ability. Econometrica, 64, 1067-1084. https://doi.org/10.24425/
cejeme.2016.119185

Yau, R., Hueng, C .J. (2019). Nowcasting gdp growth 
for small open economies with a Mixed-Frequency 
Structural Model. Computational Economics, 54, 177-198.  
https://doi.org/10.1007/s10614-017-9697-1

Zellner, A., Tobias, J. (1999). A note on aggregation, 
disaggregation and forecasting performance. Journal 
of Forecasting 19(5). https://doi.org/10.1002/1099-
131X(200009)19:5%3C457::AID-FOR761%3E3.0.CO;2-6

https://www.lancaster.ac.uk/staff/ecajt/inflation%20lags%20money%20supply.pdf
https://www.lancaster.ac.uk/staff/ecajt/inflation%20lags%20money%20supply.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp374.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp374.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1365.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1365.pdf
https://www.phil.frb.org/-/media/research-and-data/events/2012/data-revision/papers/Edge_Gurkaynak.pdf
https://www.phil.frb.org/-/media/research-and-data/events/2012/data-revision/papers/Edge_Gurkaynak.pdf
https://www.phil.frb.org/-/media/research-and-data/events/2012/data-revision/papers/Edge_Gurkaynak.pdf
https://doi.org/10.26531/vnbu2016.236.030
https://doi.org/10.26531/vnbu2016.236.030
https://www.bis.org/publ/confp04l.pdf
https://www.bis.org/publ/confp04l.pdf
https://bank.gov.ua/news/all/kvartalna-proektsiyna-model-dlya-ukrayini
https://bank.gov.ua/news/all/kvartalna-proektsiyna-model-dlya-ukrayini
https://www.snb.ch/n/mmr/reference/economic_studies_2013_07/source/economic_studies_2013_07.n.pdf
https://www.snb.ch/n/mmr/reference/economic_studies_2013_07/source/economic_studies_2013_07.n.pdf
https://www.snb.ch/n/mmr/reference/economic_studies_2013_07/source/economic_studies_2013_07.n.pdf
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
http://cejeme.org/publishedarticles/2016-24-25-635945306981718750-3327.pdf
http://cejeme.org/publishedarticles/2016-24-25-635945306981718750-3327.pdf
https://doi.org/10.24425/cejeme.2016.119185
https://doi.org/10.24425/cejeme.2016.119185
https://doi.org/10.1002/1099-131X(200009)19:5%3C457::AID-FOR761%3E3.0.CO;2-6
https://doi.org/10.1002/1099-131X(200009)19:5%3C457::AID-FOR761%3E3.0.CO;2-6


1918

D. Krukovets. O. Verchenko / Visnyk of the National Bank of Ukraine, 2019, No. 248, pp. 11–20

APPENDIX A
Table 4. Table with RMSE for all Possible Architectures with and without a Dummy, for Random Walk and NBU Forecasts.

 Months ahead Components mean

1_highest 2_highest 3_highest 3stdev 4stdev
1 0.180 0.216 0.264 0.239 0.195

2 0.241 0.271 0.298 0.283 0.249
3 0.253 0.262 0.283 0.270 0.250
4 0.275 0.284 0.301 0.294 0.279

5 0.276 0.279 0.288 0.276 0.272
6 0.263 0.264 0.278 0.262 0.255

Components residuals
1 0.172 0.196 0.201 0.327 0.377

2 0.239 0.253 0.245 0.353 0.382
3 0.258 0.266 0.261 0.393 0.424
4 0.280 0.282 0.269 0.401 0.428
5 0.277 0.277 0.263 0.407 0.419
6 0.264 0.273 0.254 0.380 0.414

Categories mean
1 0.248 0.228 0.290 0.241 0.238

2 0.339 0.310 0.350 0.335 0.334
3 0.391 0.360 0.386 0.388 0.386
4 0.426 0.391 0.408 0.418 0.421
5 0.433 0.393 0.399 0.428 0.428
6 0.426 0.376 0.396 0.412 0.420

Categories residuals
1 0.247 0.229 0.285 0.248 0.484

2 0.341 0.319 0.344 0.295 0.509
3 0.397 0.369 0.389 0.327 0.592
4 0.431 0.402 0.409 0.354 0.576

5 0.435 0.403 0.405 0.350 0.569
6 0.427 0.388 0.398 0.338 0.549

Core mean
1 0.337 0.334 0.423 0.334 0.337

2 0.450 0.436 0.459 0.436 0.450
3 0.500 0.503 0.535 0.503 0.500
4 0.505 0.520 0.549 0.520 0.505
5 0.493 0.518 0.552 0.518 0.493
6 0.481 0.500 0.524 0.500 0.481

Core residuals
1 0.337 0.352 0.423 0.347 0.423

2 0.450 0.458 0.459 0.459 0.459
3 0.500 0.531 0.535 0.525 0.535
4 0.505 0.536 0.549 0.530 0.549

5 0.493 0.521 0.552 0.513 0.552
6 0.481 0.505 0.524 0.501 0.524

Simple CARMA Simple cat Simple core Random walk Official
1 0.219 0.249 0.332 0.541 0.329

2 0.302 0.340 0.448 0.783 0.394
3 0.337 0.409 0.515 1.017 0.365
4 0.349 0.445 0.521 0.978 0.370

5 0.342 0.439 0.507 0.960 0.429
6 0.334 0.414 0.495 0.892 0.444
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Table 5. Table with p-values for the Relative Performance of all Above-Mentioned Models Compared to the NBU Benchmark, according to 
the Diebold-Mariano-West test.

 Months ahead Components mean

1_highest 2_highest 3_highest 3stdev 4stdev
1 0.060 0.100 0.500 0.120 0.070

2 0.160 0.280 0.500 0.350 0.200
3 0.130 0.120 0.170 0.110 0.110
4 0.100 0.090 0.090 0.070 0.090

5 0.150 0.140 0.150 0.120 0.140
6 0.150 0.150 0.140 0.130 0.140

Components residuals
1 0.060 0.090 0.080 0.060 0.060

2 0.180 0.200 0.160 0.160 0.150
3 0.140 0.210 0.160 0.130 0.120
4 0.140 0.160 0.120 0.100 0.080
5 0.190 0.180 0.150 0.150 0.130
6 0.170 0.180 0.150 0.150 0.140

Categories mean
1 0.120 0.110 0.490 0.080 0.090

2 0.360 0.250 0.470 0.340 0.350
3 0.460 0.400 0.260 0.460 0.430
4 0.530 0.500 0.350 0.530 0.510
5 0.520 0.490 0.390 0.530 0.500
6 0.430 0.400 0.330 0.430 0.410

Categories residuals
1 0.120 0.100 0.480 0.160 0.110

2 0.360 0.310 0.530 0.280 0.380
3 0.430 0.390 0.390 0.380 0.490
4 0.440 0.480 0.420 0.440 0.530

5 0.440 0.510 0.450 0.440 0.520
6 0.360 0.450 0.370 0.380 0.440

Core mean
1 0.820 0.800 0.970 0.800 0.820

2 0.970 0.960 0.980 0.960 0.970
3 0.880 0.890 0.900 0.890 0.880
4 0.770 0.830 0.840 0.830 0.770
5 0.710 0.790 0.810 0.790 0.710
6 0.640 0.720 0.720 0.720 0.640

Core residuals
1 0.820 0.820 0.970 0.970 0.820

2 0.970 0.930 0.980 0.980 0.930
3 0.880 0.870 0.900 0.900 0.870
4 0.770 0.820 0.840 0.840 0.820

5 0.710 0.770 0.810 0.810 0.770
6 0.640 0.700 0.720 0.720 0.700

Simple CARMA Simple cat Simple core
1 0.100 0.130 0.110

2 0.300 0.390 0.360
3 0.400 0.590 0.530
4 0.390 0.650 0.600

5 0.390 0.570 0.570
6 0.350 0.380 0.490


